Exploring the deep interior of giant planets with density functional theory and shock-compression experiments

Mandy Bethkenhagen

4th DyCoMaX Workshop

Acknowledgement

March 13, 2024

Simulations

Bingqing Cheng, Martin French, Sébastien Hamel, Chris Pickard, Ronald Redmer

Experiments

Alessandra Benuzzi-Mounaix, Federica Coppari, Frédéric Datchi, Marco Guarguaglini, Jean-Alexis Hernandez, Frederic Lefevre, Marius Millot, Alessandra Ravasio, Florent Occelli, Sandra Ninet, Tommaso Vinci

Planetary modeling

Nadine Nettelmann and Ludwig Scheibe

Exoplanet diversity

Exoplanet diversity

30% GAS GIANT

The size of Saturn or Jupiter (the largest planet in our solar system), or many times bigger. They can be hotter than some stars!

31% SUPER-EARTH

Planets in this size range between Earth and Neptune don't exist in our solar system. Super-Earths, a reference to larger size, might be rocky worlds like Earth, while mini-Neptunes are likely shrouded in puffy atmospheres.

Small, rocky planets. Around the size of our home planet, or a little smaller.

35% NEPTUNE-LIKE

Similar in size to Neptune and Uranus. They can be ice giants, or much warmer. "Warm" Neptunes are more rare.

Voyager 2: The last mission to visit the ice giants

Uranus: 1986

Neptune: 1989

Magnetic field of Uranus

Soderlund & Stanley, Philos. Trans. Royal Soc. A 378, 20190479 (2020).

Magnetic field of Uranus

- highly non-axisymmetric non-dipolar magnetic field
 - \rightarrow connection to interior structure?
 - \rightarrow formation and evolution?

Soderlund & Stanley, Philos. Trans. Royal Soc. A 378, 20190479 (2020).

Interior structure

Interior structure

Interior structure

superionic

inner mantle fluid water and/or superionic water?

- characteristics of the superionic phase:
 - \rightarrow protons moving freely through the oxygen lattice
 - \rightarrow high ionic conductivity

Molecular dynamics

100 - 1000 atoms

 ions are described as classical particles in molecular dynamics framework

> Hafner, J. Comput. Chem. **29**, 2045 (2008). Kresse and Hafner, Phys. Rev. B **47**, 558 (1993). Perdew et al., Phys. Rev. Lett. **77**, 3865 (1996).

Molecular dynamics + density functional theory

100 - 1000 atoms

- ions are described as classical particles in molecular dynamics framework
- electrons are treated quantum mechanically, where wave functions are replaced by electron density

Hafner, J. Comput. Chem. **29**, 2045 (2008). Kresse and Hafner, Phys. Rev. B **47**, 558 (1993). Perdew et al., Phys. Rev. Lett. **77**, 3865 (1996).

Molecular dynamics + density functional theory

100 - 1000 atoms

- ions are described as classical particles in molecular dynamics framework
- electrons are treated quantum mechanically, where wave functions are replaced by electron density
- exchange-correlation functional determines accuracy of the results

Hafner, J. Comput. Chem. **29**, 2045 (2008). Kresse and Hafner, Phys. Rev. B **47**, 558 (1993). Perdew et al., Phys. Rev. Lett. **77**, 3865 (1996).

Molecular dynamics + density functional theory

100 - 1000 atoms

... between condensed matter and plasma physics

- solid state densities (up to 10-fold compression)
- high temperatures (several 1000 K)
 - \rightarrow strong correlations
 - \rightarrow metallization, ionization, dissociation

Molecular dynamics + density functional theory

100 - 1000 atoms

... between condensed matter and plasma physics

- solid state densities (up to 10-fold compression)
- high temperatures (several 1000 K)
 - \rightarrow strong correlations
 - \rightarrow metallization, ionization, dissociation

Key quantities

- equations of state $\rightarrow P(\rho,T) \& E(\rho,T)$
- structure \rightarrow pair distribution function, bonding
- transport \rightarrow electrical conductivity, diffusion
- optical properties \rightarrow reflectivity, opacity

DFT-MD water phase diagram

Stanley & Bloxham, Icarus 184, 556 (2006).

French et al., Phys. Rev. B **79**, 054107 (2009). Redmer et al., Icarus **211**, 798 (2011).

Standard adiabatic models for giant planets

- Uranus' age cannot be modeled using adiabatic models based on the water EOS only
- need transport and optical properties of water and other materials (e.g. ammonia, methane)

Standard adiabatic models for giant planets

Questions addressed in the following

- I. How can we improve the phase diagram and EOS of water?
- II. Is it important to consider ammonia?
- III. What do we know about high-pressure methane?

Interior modeling directions

- Uranus' age cannot be modeled using adiabatic models based on the water EOS only
- need transport and optical properties of water and other materials (e.g. ammonia, methane)

I. How can we improve the phase diagram and EOS of water?

High-pressure experiments: diamond anvil cells

Schematic setup

 mostly used at small temperatures (<= 3000 K) and pressures up to 300 GPa

High-pressure experiments: diamond anvil cells

 mostly used at small temperatures (<= 3000 K) and pressures up to 300 GPa

Hernandez & Caracas, J. Chem. Phys. **148**, 214501 (2018). Queyroux et al., Phys. Rev. Lett. **125**, 195501 (2020).

High-pressure experiments: shock-compression

Schematic setup

Hugoniot equation $u_1 - u_0 = \frac{1}{2}(p_1 + p_0)\left(\frac{1}{\varrho_0} - \frac{1}{\varrho_1}\right)$

High-pressure experiments: shock-compression

• Hugoniot reaches fast high temperatures (e.g. several 10000 K at about 300 GPa for ices)

→ multiple shocks or pre-compression (with DAC) of sample is required to reach ice giant conditions

Shock compression experiments for water

• superionic water identified along the pre-compressed Hugoniot (initial density 1.60 g/cm³)

Shock compression experiments for water

- superionic water identified along the pre-compressed Hugoniot (initial density 1.60 g/cm³)
- 2 different superionic lattices found (fcc and bcc)

Millot et al., Nature Physics **14**, 297 (2018). Millot & Coppari et al., Nature **569**, 251 (2019).

Superionic fcc or bcc?

Wilson et al., Phys. Rev. Lett. **110**, 151102 (2013). Sun et al., Nat. Commun. **6**, 8156 (2015). French et al., Phys. Rev. E **94**, 125508 (2016).

Molecular dynamics + density functional theory

100 - 1000 atoms

... between condensed matter and plasma physics

- solid state densities (up to 10-fold compression)
- high temperatures (several 1000 K)
 - \rightarrow strong correlations
 - \rightarrow metallization, ionization, dissociation

Computational cost limits...

- system size & simulation length
- compositional complexity
- sampling to calculate entropy consistently

Moving towards large-scale simulations

Molecular dynamics + density functional theory

machine-learning potential (MLP)

= transfer of ab initio accuracy to large-scale simulations

Behler & Parrinello, Phys. Rev. Lett. **98**, 146401 (2007). Singraber et al., J. Chem. Theory Comput. **15**, 3075 (2019). Cheng, et al., PNAS **116**, 1110 (2019).

Moving towards large-scale simulations

Molecular dynamics + density functional theory

100 - 1000 atoms

machine-learning potential (MLP)

= transfer of ab initio accuracy to large-scale simulations

Key quantities

- equations of state \rightarrow P(ρ ,T) & E(ρ ,T) + S(ρ ,T) & phase transitions
- structure \rightarrow pair distribution function, bonding
- transport → electrical conductivity, diffusion + ionic conductivity & viscosity
- optical properties \rightarrow reflectivity, opacity
- (de-)mixing effects, reaction kinetics and interface stabilities

Large-scale simulations

20 000 atoms

High-pressure MLP-based phase diagram

- MLP based on artificial neural network architecture built according to framework of Behler & Parrinello
- selected 84 Behler-Parrinello symmetry functions to describe atomic environments
- used the implementation in the n2p2 code

Symmetry functions

Neural network

Behler & Parrinello, Phys. Rev. Lett. **98**, 146401 (2007). Singraber et al., J. Chem. Theory Comput. **15**, 1827 (2019). Cheng, et al., PNAS **116**, 1110 (2019). Monserrat et al., Nat. Commun. **11**, 5757 (2020).

Training data set

- largest data set contains 54 molecules for wide p-T range (~10600 structures)
- tested different functionals
- added 1000 structures used previously to train MLP for low-pressure phase diagram
- active learning yielded
 ~5900 additional structures
- total set contains ~17000 structurally diverse configurations (10% taken out for testing set)

French et al., Phys. Rev. B **79**, 054107 (2009). Cheng, Bethkenhagen et al., Nat. Phys. **17**, 1228 (2021).

Water phase transitions based on MLP

coexistence calculations

superionic

liquid

Cheng, Bethkenhagen et al., Nat. Phys. 17, 1228 (2021).

Water phase transitions based on MLP

• phase boundaries: interface pinning (PLUMED), thermodynamic integration

Water phase transitions based on MLP

- phase boundaries: interface pinning (PLUMED), thermodynamic integration & diffusion
- resolve hydrogen dynamics in great detail (rotation periods, jumping mechanism)

Cheng, Bethkenhagen et al., Nat. Phys. 17, 1228 (2021).

Phase diagram for bcc and fcc water

• superionic phase with fcc oxygen lattice is thermodynamically stable at ice giant interior conditions

 \rightarrow at low pressure bcc possible

- \rightarrow bcc could be kinetically stablized
- good agreement with XRD measurements of Millot & Coppari et al. (2019)
- melting line deviates from previous DFT-MD work at 4000 K

ightarrow almost identical for bcc and fcc

Scheibe et al., A&A **632**, A70 (2019). Cheng, Bethkenhagen et al., Nat. Phys. **17**, 1228 (2021). Reinhardt, Bethkenhagen et al., Nat. Commun. **13**, 4707 (2022).

Mixed stacking in XRD spectra

• could be potentially observed in XRD experiments

B. Cheng, M. Bethkenhagen et al., Nat. Phys. 17, 1228 (2021).

II. Is it important to consider ammonia?

DFT-MD Hugoniot and gas gun data

• Hugoniot:

$$u_1 - u_0 = \frac{1}{2}(p_1 + p_0)\left(\frac{1}{\rho_0} - \frac{1}{\rho_1}\right)$$

- very sparse shock-compression data obtained with gas guns
- most data for 0.6933 g/cm³ & 230 K
- pressure data up to 70 GPa and only two points for the temperature available
- no reflectivity data

Mitchell & Nellis, J. Chem. Phys. **76**, 6273 (1982). Radousky et al., J. Chem. Phys. **93**, 8235 (1990). Nellis et al., J. Chem. Phys. **107**, 9096 (1997). Bethkenhagen et al., J. Chem. Phys. **138**, 234504 (2013).

Experimental setup

Ravasio, Bethkenhagen et al., Phys. Rev. Lett. **126**, 025003 (2021).

- 3 experimental campaigns at LULI2000 laser facility (Palaiseau, France)
- liquid NH₃ loaded under cryogenic conditions (~ -40°C)
- initial conditions: $P_0 = 14$ bar, $T_0 = 295$ K
- diagnositics:
 - velocity interferometer system for any reflector (VISAR) at 532 nm and 1064 nm → EOS & reflectivity
 - streaked optical pyrometer (SOP)
 - \rightarrow self-emission of shocked sample (T)

Experimental setup

Equation of state

- EOS is measured up to 350 GPa and 40000 K
- consistent with gas gun data
- subtle slope change at 90 GPa and 7000 K

Ravasio, Bethkenhagen et al., Phys. Rev. Lett. 126, 025003 (2021).

Equation of state

- EOS is measured up to 350 GPa and 40000 K
- consistent with gas gun data
- subtle slope change at 90 GPa and 7000 K

Ravasio, Bethkenhagen et al., Phys. Rev. Lett. 126, 025003 (2021).

Reflectivity

- reflectivity continuously rises above 50 GPa and reaches maximum at about 120 GPa
- measurements and calculations agree remarkably well
- almost no dependence on XC functional except initial state

exp: $n_{exp} = 1.32$

DFT: $n_{PBE} = 1.42$ vs. $n_{HSE} = 1.34$

 disagreement with Li et al. (2013) due to n₁₁ = 1.00

Ravasio, Bethkenhagen et al., Phys. Rev. Lett. **126**, 025003 (2021). French, Bethkenhagen et al., Phys. Rev, B **107**,134109 (2023).

Diamond anvil cell data

Queyroux et al., Phys. Rev. B 99, 134107 (2019).

Diamond anvil cell data

- second superionic phase?
- no structure for the N lattice proposed

Kimura & Murakami, PNAS 118, e20211810118 (2021).

Queyroux et al., Phys. Rev. B 99, 134107 (2019).

Experimental setup including DAC

- liquid and solid NH₃ loaded under cryogenic conditions in DAC
- pre-compressions up to 3.1 GPa (measured from ruby fluorescence)

Hernandez, Bethkenhagen et al., Nat. Phys. 19, 1280 (2023).

Melting curve

Hernandez, Bethkenhagen et al., Nat. Phys. 19, 1280 (2023).

Melting curve

- observed superionic-fluid phase transition for datasets with precompressed targets of 1.25 GPa – 2.45 GPa
- performed DFT-MD calculations with 108 molecules:

 \rightarrow heating/cooling along 2 isochors to constrain melting line

 \rightarrow expansion calculations at 3000 K favor Queyroux et al. (2019) trend of melting line

 \rightarrow anchored our fit using their data

Hernandez, Bethkenhagen et al., Nat. Phys. 19, 1280 (2023).

Electrical conductivity of ammonia and water

Electrical conductivity of ammonia and water

Electrical conductivity of ammonia and water

non-adiabatic models:

→ electrical conductivity of ammonia generally found higher than the one of water (one order of magnitude at 100 GPa)

adiabatic models:

 \rightarrow melting line slope depends on composition, but intersect

→ ammonia-rich layer in ice giants?

III. What do we know about high-pressure methane?

Stability of superionic phases

Hydrocarbons

 hydrocarbons do NOT form superionic phases

→ polymerization and diamond formation instead

 study of superionic phases that are potentially stable to the addition of minor carbon concentrations needed

 \rightarrow however: not even methane alone well understood

Kraus et al., Nat. Astron. **1**, 606 (2017). He et al., Sci. Adv. **8**, abo0617 (2022).

Phase diagram for C/H mixtures

- recently improved the phase diagram by constructing composition-dependent MLP
- find methane to form diamond throughout both ice giants

 \rightarrow but probably unrealistic as carbon ratio changes in interior and during evolution

- find a depletion zone above 200 GPa and 3000 K – 3500 K
 - \rightarrow diamond formation is favorable regardless of carbon content

Cheng et al, Nat. Comm. 14, 1104 (2023).

Conclusions

Uranus

Courtesy by N. Nettelmann.

• interior models for Uranus & Neptune remain challenging

 \rightarrow more observational data

- ab initio simulations & experiments can support the improvement of models
 - \rightarrow melting lines
 - → transport properties (conductivities, diffusion, viscosity)

 \rightarrow thermodynamic stability of ice-rock mixtures ?

MgSiO₃-H₂O (120 GPa)

Kovačević et al., Sci. Rep. 12, 13055 (2022).

A new **Diamond Open-Access Journal** in geoscience?

Mandy Bethkenhagen

Mohammed Gouiza

Thibault Duretz

Maëlis Arnould

GEODYNAMICA

- From Earth's core to surface
- Planets and exoplanets' interior
 - From geodynamic modeling to mineral physics

Email: geodynamicaj@gmail.com Keep posted... More to come soon!

Training set vs. testing set error (RSME)

Water

Energy (meV/atom)		Force (meV/Ang.)	
Training set	Test set	Training set	Test set
13	14	750	740

Hydrocarbons

Energy (meV/atom)		Force (meV/Ang.)	
Training set	Test set	Training set	Test set
43	42	865	767
42	45	922	800

Benchmarking the machine learning potential (MLP)

- MLP benchmarked against DFT-MD with respect to EOS, pair distribution functions and diffusion
- potential runs stable up to at least 6000 K and 1000 GPa \rightarrow covers desired phase space
- find no significant difference for the H diffusion coefficients in bcc and fcc superionic

French et al., Phys. Rev. E **93**, 022140 (2016). Cheng, Bethkenhagen et al., Nat. Phys. **17**, 1228 (2021).

Thermodynamics of the C/H mixture

- non-ideal mixing effects taken into account
- identify 2 separate liquid-liquid phase separation in the C/H mixture:
 - PS1: A C/H mixture with a carbon fraction that is between the values of χ_c^{-1} and χ_c^{-2} will first undergo a liquid-liquid phase separation, and then if diamond forms, it will preferentially nucleate from the carbonrich liquid phase as it has higher μ_c
 - PS2: For P between 100 and 600 GPa and T ≤ 4000 K, C in the C/H mixture will always will always be exposed to a thermodynamic driving force to form diamond, regardless of how low the C fraction is: "depletion zone"

Density Functional Theory Molecular Dynamics

Basic Idea

• replace many-body wavefunction by effective one-electron problem

Workflow of VASP

J. Hafner, J. Comput. Chem. **29**, 2045 (2008). G. Kresse und J. Hafner, Phys. Rev. B **47**, 558 (1993). J. P. Perdew et al., Phys. Rev. Lett. **77**, 3865 (1996).

cartoon by Ann E. Mattsson

Electrical conductivity

Electronic conductivity

$$L_{mn}(\omega) = \frac{2\pi q^{4-m-n}}{3Vm_e^2 \omega} \sum_{\boldsymbol{k}\nu\mu} |\langle \boldsymbol{k}\nu|\hat{\boldsymbol{p}}|\boldsymbol{k}\mu\rangle|^2 (f_{\boldsymbol{k}\nu} - f_{\boldsymbol{k}\mu})$$
$$\times \left(\frac{E_{\boldsymbol{k}\mu} + E_{\boldsymbol{k}\nu}}{2} - h_e\right)^{m+n-2} \delta(E_{\boldsymbol{k}\mu} - E_{\boldsymbol{k}\nu} - \hbar\omega)$$

$$\sigma = \lim_{\omega \to 0} L_{11}(\omega)$$

French et al., Phys. Rev. B **82**, 174108 (2010). French et al., Phys. Rev. Lett. 107, 185901 (2011).

Electronic conductivity

Electronic conductivity

$$L_{mn}(\omega) = \frac{2\pi q^{4-m-n}}{3Vm_e^2 \omega} \sum_{\boldsymbol{k}\nu\mu} |\langle \boldsymbol{k}\nu|\hat{\boldsymbol{p}}|\boldsymbol{k}\mu\rangle|^2 (f_{\boldsymbol{k}\nu} - f_{\boldsymbol{k}\mu})$$
$$\times \left(\frac{E_{\boldsymbol{k}\mu} + E_{\boldsymbol{k}\nu}}{2} - h_e\right)^{m+n-2} \delta(E_{\boldsymbol{k}\mu} - E_{\boldsymbol{k}\nu} - \hbar\omega)$$

$$\sigma = \lim_{\omega \to 0} L_{11}(\omega)$$

Ionic conductivity

$$\sigma_p = \frac{e^2 n_p}{k_B T} (D_p - \gamma D_O),$$

French et al., Phys. Rev. B **82**, 174108 (2010). French et al., Phys. Rev. Lett. 107, 185901 (2011).

Optical properties

Optical properties

Interior structure modeling

Observational constraints

- mass, radius, rotation, surface temperature
- gravitational moments
- surface and mean composition

Equations and Input

 $dm = 4\pi r^2 \varrho dr$

$$\frac{dV}{dr} = \frac{1}{\varrho} \frac{dp}{dr}$$

- number and properties of layers
- equation of state (EOS)

Fortney & Nettelmann, Space Sci. Rev. 152, 443 (2010).

Linear mixing approximation for planetary ices

• deviations: density < 4%, energy < 4 kJ/g, diffusion < 20%

 \rightarrow BUT: phase transitions matter!

March 13, 2<u>024</u>

Improved Uranus models

- Uranus models contain DFT-MD EOS for ammonia and methane
- Icy model: ice-richest and coldest model found, very low H/He content in inner mantle
- TBL model: non-adiabatic, thermal boundary layer adjusted to give correct age of Uranus

Future work based on the MLP

• investigate proposed ice VII' \rightarrow ice VII'' phase transition with the MLP

Hernandez & Caracas, J. Chem. Phys. **148**, 214501 (2018). Reinhardt, Bethkenhagen et al., Nat. Comm. **13**, 4707 (2022).

Other structures

• several other structures (e.g. Pbcm) considered and will be further investigated in the future

Cheng, Bethkenhagen et al., Nat. Phys. 17, 1228 (2021).

Chemistry – pair distribution functions

NH₃ dissociates increasingly above 2000 K into H₂, N₂, hydrazine (N₂H₄) and sometimes even HN₃

Ravasio, Bethkenhagen et al., Phys. Rev. Lett. 126, 025003 (2021).

Diffusion coefficients

- calculated via velocity autocorrelation function
- diffusion coefficients for both species increase with temperature along Hugoniot
- slope changes slightly at 20 GPa and 90 GPa
- ratio of diffusion coefficients becomes almost constant in plasma

Ravasio, Bethkenhagen et al., Phys. Rev. Lett. 126, 025003 (2021).

Electrical conductivity

- lowest point in good agreement with previous shock-compression experiments
- significantly higher values than Li et al. (2013) ~ 70 GPa

 \rightarrow superionic phase?

• overall: find larger conductivity compared to water Hugoniot

 \rightarrow NH₃ conductivity 1 order of magnitude higher compared to H₂O at ~100 GPa

Kovel, PhD thesis (1973). Mitchell & Nellis, J. Chem. Phys.**76**, 6273 (1982). Nellis et al., Science **240**, 779 (1988). French et al., Phys. Rev. B **82**, 174108 (2010).
Ammonia hydrates (AHH)

Phase diagram

Hydrogen dynamics excitation

Disordered Molecular Alloy

AHH = 2:1 ammonia-water mixture

 \rightarrow transitory phase between superionic and solid phases

 \rightarrow disorder in the heavy ion lattice

Naden Robinson et al., PNAS **114**, 9003 (2017). Liu et al., Nature Comm. **8**, 1065 (2017).

Zoo of superionic ammonia hydrates

•

March 13, 2024

- ammonia-rich phases more stable at high pressures (AQH and AHH)
- extent of superionic region depends ammonia content
 - NH₃ might be very concentrated in planetary layer, but masses very similar:

 H_2O 18 g/mol NH₃ 17 g/mol

Bethkenhagen et al., J. Phys. Chem. A **119**, 10582 (2015). Naden Robinson et al., J. Chem. Phys. **149**, 234501 (2018). Naden Robinson & Hermann, J. Phys.: Condens. Matter **32**, 184004 (2020).

EOS and phase diagram for methane

Sherman et al., Phys. Rev. B **86**, 224113 (2012). Radousky et al., J. Chem. Phys. **93**, 8235 (1990). Bethkenhagen et al., Astrophys. J. **848**, 67 (2017).

EOS and phase diagram for methane

Sherman et al., Phys. Rev. B **86**, 224113 (2012). Radousky et al., J. Chem. Phys. **93**, 8235 (1990). Bethkenhagen et al., Astrophys. J. **848**, 67 (2017).

IV. Are superionic phases stable to the addition of rocky material?

Uranus models with compositional gradients

- compositional gradient naturally explains Uranus' low luminosity without artificial thermal boundary layer
- hot, non-adiabatic models with mixture of ice and rock in interior rather than differentiated layers plausible

Needs for more realistic models

TBL/compositional gradients?
constrain the ice:rock ratio

- wide-range EOS dataset for ices, rocks and their mixures based on experiment & DFT-MD
- electrical conductivity + reflectivity → mixing model for transport properties?!
- explore phase transitions (interfaces?) with classical MD with potentials derived from DFT

Helled et al., Space Sci. Rev. 216, 38(2020).

interface: MgO + superionic water

Superionic ice-rock mixtures

- mixtures $SiO_2 + H_2$ and $SiO_2 + H_2O$ are predicted to be superionic as well
- superionic phase seems to be stable to addition of rocky material → but thermodynamics need to be checked!
 Gao et al., Phys. Rev. Lett. 128, 035702 (2022).